

#### A Coupled Geomechanical, Acoustic, Transport and Sorption Study of Caprock Integrity in CO2 Sequestration

Project Number: DE-FE-23223

Manika Prasad Colorado School of Mines

Co-I: Bill Carey (Los Alamos National Lab), Ronny Pini (Imperial College) Post-Docs; Students: LANL: L. Frash; CSM: S. Kumar, Y. Zhang, N. Joewondo, K. Livo, A. Hasanov

> U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016



### **Presentation Outline**

- Benefit to the Program
- Goals and Objectives
- Technical Status
- Accomplishments to Date
- Synergy Opportunities
- Summary
- Appendix



## Benefit to the Program

- Area of Interest 2: Fractured Reservoir and Seal Behavior
- Measured changes in permeability, sorption, mass transfer, and mechanical and seismic properties of seal rocks due to supercritical CO<sub>2</sub> will allow us to:
  - Understand CO<sub>2</sub> migration in caprocks
  - Provide tools to identify and monitor damaged caprocks
  - Determine CO<sub>2</sub> escape pathway through shale
- Outcome: Our methods will allo a better assessment of storage security and develop certainty for Carbon Storage Program effort to monitor and ensure 99% CO<sub>2</sub> retention and storage permanence



#### **Project Overview**: Goals and Objectives

- **OBJECTIVE 1**: Determine the behavior of intact and fractured caprocks when exposed to supercritical CO<sub>2</sub> at elevated pressures.
  - GOAL 1: Assess the risk of CO<sub>2</sub> leakage arising from geomechanically damaged shale.
- OBJECTIVE 2: Characterize the physical, chemical and geomechanical processes associated with fluid flow and storage in caprocks
  - GOAL 2: Provide tools for monitoring and identifying damaged shale caprocks.



## **Technical Status**

- 1. Direct-shear experiments on shale permeability
- Sorption capacity of shale for hexane, CO<sub>2</sub>, water vapor in dry and waterimbibed state
- 3. Changes in acoustic and NMR properties during CO<sub>2</sub> sorption



### Methods and Materials

- Vapor adsorption isotherms: hexane, water, nitrogen
- BET apparent specific surface area (ASSA)
- Sample: Siltstone (no OM) and Organic-rich shales





## Results (from 2015)



- Cryogenic N<sub>2</sub> selectively blocked by nano-sized pores in OM\*
- OM<sup>\*</sup> pores are hydrophobic
- OM<sup>\*</sup> pore development starts at the onset of oil window
- Presence of bitumen free OM<sup>\*</sup> pores

\*OM = organic matter *Details on Kumar-Zhang's poster* 



## **Preferential Sorption**

- $\succ$  CO<sub>2</sub> sorption capacity in dry state
- CO<sub>2</sub> sorption capacity in water-imbibed state (imbibition at 4000 psi)

Samples used:

- Illite clay samples
- Organic-rich shales



Details on Kumar-Zhang's poster



### Sorption in shales with water



- CO<sub>2</sub> sorption in dry rock: OM pores and Illite pores fill with CO<sub>2</sub>
- CO<sub>2</sub> sorption after forced imbibition with water: Illite pores fill with water; OM pores fill with CO<sub>2</sub>

Details on Kumar-Zhang's poster



#### <sup>3</sup>Kinetics of CO<sub>2</sub> sorption: presence of water

Rate of sorption is reduced substantially in the presence of water due to the much lower diffusion coefficient of  $CO_2$  in liquid water than that of its gas state.



Details on Kumar-Zhang's poster



#### Fractional Uptake and Analytical Solution





## Method

- Ultrasonic p-wave measurements on water and hexane vapor sorbing clay aggregates
- Distinct flow and deformational properties of liquid and gas fluids in pores affect P-wave modulus differently
- Resonance frequency (FFT) used as proxy for attenuation

| Sample          | Porosity, $\phi$ | Bulk Density, $ ho_d$ | Grain Density, $ ho_d$ |
|-----------------|------------------|-----------------------|------------------------|
|                 | (%)              | (g/cc)                | (g/cc)                 |
| Illite          | 17.66            | 2.21                  | 2.68                   |
| Smectite        | 17.46            | 2.27                  | 2.75                   |
| I-S Mixed Layer | 20.95            | 2.11                  | 2.67                   |



## Vapor Adsorption in Clays

- Partial saturation for vapor phase adsorbed (\*CUC) phase
- Saturation of adsorbed phase:  $S_{ads} = \frac{(Q_1 v_1)}{(\phi/\rho_{\sigma})}$ phase volume Pore volume



Details on Kumar-Zhang's poster

Adsorbed

#### 1874 CLORADO

## Isotherms, Waveforms, Spectra





### P-wave Modulus

- P-wave modulus (M<sub>CUC</sub>) is unaffected by Hexane CUC in pores
- Two regimes with water CUC in pores
  - Initial slight rise in P-wave modulus up to 3-5% saturation
  - Drastic drop in P-wave modulus with further increase in saturation





### NMR T2 Relaxation Times



NMR spectra in a combined Berea sandstone and a Niobrara mudstone sample



#### **Direct-Shear Experiments on Shale Perm**

Carey, LANL





#### Effect of Confining Pressure (Depth)

Carey, LANL

#### Utica shale at 3.5 MPa Utica shale at 22 MPa







#### Permeability Behavior and Depth





## Accomplishments to Date

#### Completed:

- Experimental Setup
- Subcritical Adsorption on various fluids
- CO2 sorption in shales / clay
- Acoustic tests during sorption
- Permeability of shear fractures in Utica shale
- Leakage through damaged caprock is critically dependent on the interaction shale properties and depth

#### Ongoing:

- Acoustic Tests
- Equation of state calculations
- High pressure and temperature tests
- NMR experiment during CO2 injection
- Triaxial tests for strength and fracture permeability



# Synergy Opportunities

- Our work on changes in acoustic and NMR properties of caprocks with  $CO_2$  has synergies with research on:
  - Quantification of CO<sub>2</sub> storage from remote seismic surveys used to monitor, measure, and verify CO<sub>2</sub>
  - Evaluation of storage capacity of CO<sub>2</sub> storage sites using well log analyses of NMR and acoustic logs
  - Assess changes in geomechanical strength of caprocks after CO<sub>2</sub> injection
  - Kinetics of supercritical CO<sub>2</sub> adsorption



## Summary

#### – Key Findings:

- Transition from transmissive to non-transmissive fracture systems (for Utica shale > 15 MPa)
- Sorption dependent on sorptive and mineralogy
- No CO2 sorption in clays in the presence of water
- Lessons Learned:
  - Sorption experiments should be conducted in presence of water
- Future Plans:
  - Acoustic tests with simultaneous measurements of storage capacity and acoustic properties
  - Acoustics, NMR, and permeability tests with more cap rocks